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ABSTRACT

The Transformational Challenge Reactor (TCR) program is leveraging additive manufacturing (AM) 
technologies to fabricate nuclear components which will be assembled into a fully functional microreactor 
core. Compared with traditional manufacturing technologies, AM technologies allow (1) real-time 
observation of the manufacturing process at a much higher resolution using in-situ monitoring 
technologies to capture the sensor signatures that scientifically describe each event occurring over time 
and space and (2) validation of the manufacturing process quality using domain-informed data analytics 
techniques as a potential qualification and certification methodology for the final component.

This report provides an update on the program work on in-situ and ex-situ data correlation and associated 
data analytics results. Examples are provided to illustrate progress with respect to laser powder bed fusion 
(L-PBF), binder jetting, computed tomography (CT) reconstruction, and mechanical testing. Elements of 
the Digital Thread and data management infrastructure are discussed in the main document, and an 
extensive supplemental appendix is provided detailing the Digital Platform, as well as its implementation 
and subcomponents. In conclusion, the path forward for the next fiscal year is also discussed.

1. INTRODUCTION

The ultimate goal of the TCR Digital Platform is to enable determination of meaningful correlations 
between in-situ sensing data and ex-situ reactor component properties, thereby demonstrating the 
potential of the “born qualified” and advanced manufacturing approaches in the nuclear application space. 
As a corollary, it is necessary for a large proportion of the Digital Platform infrastructure (hardware and 
software) to be in place before such correlations can be determined.  This fiscal year (FY20) has focused 
on developing this infrastructure and prototyping certain high-risk aspects of the correlation workflow. 
Infrastructure developments are fully described in the Digital Platform supplementary material and other 
FY20 TCR reports. This report demonstrates the usage of various aspects of the Digital Platform 
infrastructure as they relate to these correlation tasks. At the end of this report, a roadmap is presented 
detailing the planned FY21 efforts in this space. 

The TCR program recognizes that several different types or levels of correlation are possible. These 
correlation levels approximately correspond to the four types of augmented intelligence (AI) algorithms—
descriptive, diagnostic, predictive, and prescriptive—as defined in the supplementary Digital Platform 
material. This report considers three correlation levels: direct observation of defects, bulk correlations 
driven by machine learning (ML), and localized correlations driven by ML. 

Direct observation of defects can be performed using only descriptive and diagnostic AI algorithms. The 
TCR team can report several correlations based on direct observation for FY19 and FY20. Bulk 
correlations necessitate at least a simple predictive AI algorithm. These correlations summarize the in-situ 
data for an entire component and attempt to correlate those data with bulk properties measured ex-situ. 
Because this level of correlation does not consider component geometry, it is not strictly generalizable, 
and therefore it is not a primary target of the TCR program. Instead, the bulk correlations presented in this 
report should be considered as prototypes and proofs of concept for the localized correlation efforts. 
Localized correlations also require a predictive AI, and they attempt to correlate local in-situ data with 
some representation of local ex-situ component properties. As these correlations will address component 
geometry, they are more generalizable, so they remain the focus of the TCR data team in FY21.

In addition to infrastructure requirements, the existential challenge to implementing a localized 
correlation AI model is ex-situ data volume. The ML models being designed for this task require on the 
order of thousands of data points to be properly trained. For example, if the model is to be trained to 
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predict component yield strength based on the in-situ data, then thousands of tensile tests must be 
performed and tracked via Digital Threads within the Digital Platform. Furthermore, these tensile 
specimens must be diverse to accurately represent the variability expected in the full population of related 
reactor components. This report highlights the success of this approach in very specific cases, and it paves 
the way for next year’s parameter space exploration campaign which is needed to develop the proposed 
generalizable approach to geometry-agnostic certification and qualification of additively manufactured 
nuclear components.

2. DIRECT OBSERVATION OF DEFECTS

2.1 DIRECT ANOMALY DETECTION

For reasons which are not currently entirely understood, the ConceptLaser M2 machine occasionally 
spreads a powder layer incorrectly. This can result in incomplete powder coverage of one or more parts in 
the build, as shown in Figure 1. This anomaly can be directly detected by Peregrine; for example, many 
instances of this event are detected in the build shown in Figure 2. Because these anomalies change the 
effective powder layer thickness in subsequent layers, the solidification behavior of the melt pools, and 
hence the corresponding microstructure and pore populations, are expected to be different than that seen 
under nominal conditions. Correlating these detected anomalies to specific microstructural features is a 
goal for FY21. 

Figure 1. Powder coverage is evidently incomplete for parts P7, P8, and P12. 
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Figure 2. Plot of super-elevation detections throughout the height of the build. Each spike in super-elevation 
corresponds to an improper powder spread which intersects with part P7. 

Misprints on the ConceptLaser M2 machine are directly detectable via Peregrine analysis. During a 
misprint, material is fused in a location not specified by the part designers nor indicated by the 3D model 
of the part. A direct comparison between Peregrine’s fused powder detections and the registered CAD 
information makes such a flaw highly evident, as shown in Figure 3. Detection of these defects was first 
demonstrated in FY19.

Figure 3. The misprints are highlighted in orange by Peregrine in the left image 
and are visible ex-situ on the as-built part in the right image.
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Contamination of the recoating roller on the ExOne Innovent Binder Jet systems can cause recoater 
streaking anomalies. Because the powder layer is not spread properly in these regions, recoater streaking 
is expected to be detrimental to the density and mechanical properties of the silicon carbide components, 
although this has not yet been directly verified. Improvements in data collection and analysis in FY20 
have made reliable detection of these potential defects possible; Figure 4 shows an example of a recoater 
streaking anomaly intersecting with a printed silicon carbide fuel element. 

Figure 4. 3D reconstruction of the entire build showing the recoater 
streaking anomaly (blue) intersecting with the part identified as P3.

2.2 LASER MISALIGNMENT

Shifts in the laser alignment on the ConceptLaser M2 can be directly detected using Peregrine-driven 
analysis of the in-situ imaging data. Laser shifts may occur when a build is paused and restarted, as 
occurred for the tubes shown in Figure 5, after approximately 50 mm of build height. This “witness line” 
is eminently visible ex-situ and can also be observed in the reconstruction of the in-situ data (Figure 6). 
Detection of these defects was first demonstrated in FY19.
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Figure 5. An image taken after the completion of the build; observe the witness line 
located approximately one third up the height of the build.

Figure 6. A reconstruction of the neural network pixel classifications, 
in which the witness line is also visible.
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Closer inspection of the in-situ data (Figure 7) reveals that the laser shift is substantially more pronounced 
toward the rear of the M2 (laser module #1) than toward the front of the M2 (laser module #2). This 
contrast is also visually apparent ex-situ, where the front and rear of the M2 are left and right, respectively 
in Figure 5. Based on the in-situ data, the magnitude of the shift is approximately 500 µm in the rear and 
less than 100 µm in the front. It is also apparent that the shift is permanent, meaning that for the 
remainder of the build, the lasers remain offset from their original positioning at the beginning of the 
build.

Figure 7. (left) Confirmation that the laser shift remains constant throughout the 
remainder of the build, (middle) the more pronounced shift toward the rear 

of the M2, and (right) the less pronounced shift toward the front.

2.3 OXIDATION BANDING

Post-heat treatment, several bands of discoloration were visible on parts from a particular ConceptLaser 
M2 build (Figure 8). These bands directly correlate to fluctuations in the chamber oxygen content, as 
reported in the log file (Figure 8). During this build, the oxygen content fluctuated between 0.05 and 
0.15%, which is atypical. Importantly, this correlation was identified by a technician using Peregrine to 
review the build data without direct support from the data team. Empowering the entire manufacturing 
team with the ability to identify and understand these types of correlations is absolutely critical for the 
success of the TCR program given the massive scale of the data to be produced during reactor fabrication.  
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Figure 8. A ConceptLaser M2 build with discoloration bands evident at various points in the build height. 
The chamber oxygen concentration data are manually overlaid on top of the image. 

2.4 REGISTRATION OF IN-SITU AND EX-SITU DATA

In FY20, tools were added within Peregrine to allow for 2.5D co-registration between ex-situ x-ray 
computed tomography (XCT) data and the layer-wise imaging data and associated neural network 
anomaly detections. Figure 9 shows a demonstration of this co-registration technique applied to a build of 
test samples containing engineered porosity. This technique is expected to be fully leveraged in FY21. 
Furthermore, the use of Simurgh (Section A-8) to perform the XCT reconstruction using AI will 
dramatically improve the quality and utility of the XCT data. It is important to note that any correlations 
determined via this technique will be limited to features on the same size scale as the resolving power of 
the in-situ powder bed camera, regardless of the XCT scan resolution. This limitation is one of the 
motivations for increasing the imaging sensor resolution on the ConceptLaser M2 machine, as described 
in the FY20 TCR report entitled Development of Monitoring Techniques for Laser Powder Bed Additive 
Manufacturing of Metal Structures. 
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Figure 9. Ex-situ XCT data registered to the in-situ printer coordinate system. As a demonstration, 
yellow in-situ swelling detections are overlaid on top of the XCT data. 

3. BULK MACHINE LEARNING CORRELATIONS

3.1 FEATURE VECTORS

A feature vector is a representative summary of a more complex data set. In the context of this report, 
feature vectors are designed to be ingested by predictive AI algorithms and used to predict ex-situ part 
properties. One way to summarize the in-situ Peregrine anomaly detections for a given part is to calculate 
the number of voxels (where the voxel size is defined by the camera resolution and the layer thickness) 
within that part which belong to each anomaly class. In this construction, a feature vector might look like 
{0.40,0.35,0.25}, indicating that 40, 35, and 25% of the voxels within that part belong to anomaly classes 
#1, #2, and #3, respectively. 

This type of feature vector contains no information about the geometry of the part, yet it is well established 
that geometry-defect relationships play a critical role in determining part properties. Furthermore, such 
feature vectors ignore anomalies which are present near the part but do not lie directly on top of the part. For 
this reason, these types of feature vectors should only be used to compare and predict bulk properties for 
parts with identical geometries. This approach has been used as a prototype during development of the 
Digital Platform and the more advanced techniques described in the Section 4.3.
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3.2 MACHINE LEARNING APPROACH

Feature vectors are high dimensional, meaning that they can only be fully represented in high dimensional 
space. Therefore, identifying correlations can be challenging. To address this issue, several different 
clustering algorithms are available which allow high dimensional vectors to be approximately represented 
in 2D space. The following subsections make use of the established t-distributed stochastic neighbor 
embedding (t-SNE) unsupervised ML algorithm for this task. Fundamentally, the t-SNE algorithm 
attempts to cluster bulk specimens with similar in-situ feature vectors together while separating samples 
with different feature vectors. It is important to note that all t-SNE plots are completely dimensionless, 
and the spacings between the clusters are highly nonlinear. Supervised ML techniques can also be applied 
to these feature vectors, but efforts in this work have focused on applying such supervised ML models 
only to the more localized feature vectors described in Section 4.3, as those relate directly to the ultimate 
goals of the TCR program. 

3.3 PROCESS OUTCOMES ACROSS A L-PBF PRINT AREA

In FY20, identical pentagonal specimens (Figure 10) were fabricated on the ConceptLaser M2. Clustering 
of the bulk feature vectors demonstrates both the capabilities and limitations of this technique. The 
existence of clear clustering in Figure 11 indicates that the in-situ feature vectors can be used to detect 
variation in the parts correlated to their y position within the build chamber. Conversely, while minor 
variations in as-fabricated density were identified using ex-situ pycnometry, these variations do not 
appear to correspond to any of the in-situ feature clusters (Figure 12). These pentagonal samples were 
fabricated during two different builds. Comparison of the feature vectors from each build leads to several 
conclusions. Based on the clustering evident in Figure 13, it appears that the intra-build variation (in in-
situ sensing signatures) is more significant than any inter-build variation—this result has positive 
implications for the laser powder bed additive manufacture of reactor components for TCR, as it suggests 
a relatively lower degree of variability between builds.  

Figure 10. Post-build image of some of the pentagonal samples still attached to the build plate.
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Figure 11. Clustering of in-situ feature vectors. Each dot corresponds to a single pentagonal specimen. 
Coloration indicates the y position of the pentagonal sample. In particular, samples with smaller y values (closer 
to the chamber door) have in-situ feature vectors which are distinct from the feature vectors of other specimens.

Figure 12. Clustering of the in-situ feature vectors. Each dot corresponds to a single pentagonal specimen. 
Coloration indicates the measured density of the as-fabricated specimen. The evident clusters do 

not appear to correlate with any trends in the ex-situ pycnometer data.
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Figure 13. Clustering of the in-situ feature vectors. Each dot corresponds to a single 
pentagonal specimen. Coloration indicates the source build of the specimen.

4. LOCALIZED MACHINE LEARNING CORRELATIONS

4.1 EX-SITU TESTING PROCEEDURE DEVELOPMENT

In FY20, 586 AM SS316L samples from three different ConceptLaser M2 builds were mechanically 
tested. The lessons learned during these preliminary tests are being leveraged during planning of the full-
scale testing campaign outlined in Section 5. As introduced earlier in this report, creating an AI model to 
estimate the mechanical properties of a part requires in-situ anomaly information, as well as large 
quantities of spatially correlated ex-situ testing data. Furthermore, because local part geometry can have a 
significant impact on the importance of a given defect, the part geometry must be represented 
computationally. To this end, it is critical that the spatial locations of each mechanical test specimen are 
carefully tracked within the Digital Platform. In FY20, standard SSJ3 tensile bars (Figure 14) were 
carefully extracted from builds using wire electrical discharge machining. The procedures necessary to 
maintain spatial tracking of such specimens were developed during this phase of the TCR program and 
will enable correlations between the measured mechanical properties and the voxel-wise in-situ sensing 
data. Figure 15 shows an efficient method for extracting several hundred SSJ3 tensile specimens from a 
single L-PBF build.
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Figure 14. Diagram of a standard SS-J3 mechanical testing specimen (left) and 
a photo of a mechanical test apparatus (right).

Figure 15. (a) Side view of a build with a CAD model of samples overlaid 
and (b) an isometric view of the same CAD model.

Small ball punch testing was also performed on AM SS316L specimens during FY20. It was hoped that 
this form of mechanical testing would enable extremely rapid, localized measurements of part tensile 
properties. Unfortunately, initial results have not been promising for this use case. Specifically, AM parts 
with apparent major defects were tested, yet the mechanical properties measured by the small ball punch 
tests showed limited differences relative to nominal AM SS316L material. As a result, small ball punch 
testing may not be pursued in FY21; more details about the future ex-situ testing plan can be found in 
Section 5. 

4.2 PRELIMINARY EX-SITU TESTING RESULTS

The tensile testing results for a subset of the specimens shown in Figure 15 are reported in Figures Figure 
16–Figure 18 using standard box plots. Figure 16 reports the measured yield tensile strength (YTS), with 
the data subdivided by the specimen build height. The specimens analyzed in the top-left subplot were 
printed closest to the build plate, whereas the specimens in the bottom subplot were printed close to the 
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top of the as-built part. The distance of each test specimen from the centerline (as measured along the 
build chamber y-axis Figure A-4) of the as-built part is reported on the x-axis. Interestingly, an increased 
YTS is observed for the specimens extracted from nearer to the as-built part’s edge, which is further away 
from the centerline. Note that the measured variation in the YTS is quite significant, with a variance of 
100 MPa. 

Figure 17 reports the measured elongation, with the data subdivided by the specimen build height. The 
x-axis indicates the distance of each specimen from the centerline of the as-built part. No clear trends with 
respect to build height or centerline distance are exhibited for elongation, and variation between the 
specimens is relatively minimal.

Figure 18 reports the measured ultimate tensile strength (UTS), with the data subdivided by the specimen 
build height. The x-axis indicates the distance of each specimen from the centerline of the as-built part. 
While there is no clear trend with respect to centerline distance, a significant drop in mean UTS is 
observed for the specimens printed closest to the top of the as-built part. Additional mechanical testing 
must be performed to verify and understand this observation. 
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Figure 16. Mechanical yield tensile strength (MPa) test data separated by tensile specimen build height and 
reported as a function of distance from the center of the as-built part. The horizontal lines denote 

the mean of the specimens with planar positions common to all three build heights.
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Figure 17. Percent elongation test data separated by tensile specimen build height and reported as a 
function of distance from the center of the as-built part. The horizontal lines denote 

the mean of the specimens with planar positions common to all three build heights.
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Figure 18. Ultimate tensile strength (MPa) test data separated by tensile specimen build height and 
reported as a function of distance from the center of the as-built part. The horizontal lines 

denote the mean of the specimens with planar positions common to all three build heights.
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The results from the preliminary tensile testing campaign are summarized in Table 1. It is worth 
reiterating that at this time these trends are only valid for this particular build and these specific 
processing conditions. The testing plan detailed in Section 5.1 will determine if these trends are 
generalizable across as-built L-PBF AM SS316L components.

Table 1. Descriptive statistics derived from 353 tensile samples extracted from a single as-built L-PBF AM 
SS316L part.

Property Mean Variance
Yield tensile strength (MPa) 414 100
Percent elongation (%) 40.4 9.14
Ultimate tensile strength (MPa) 553 52.8

4.3 FEATURE VECTORS

The bulk feature vectors introduced in Section 3.1 have several limitations, namely that they do not 
encode (i.e. describe) the local part geometry, so they cannot generalize to diverse part geometries or 
provide localized part property predictions. As a result, a new feature vector structure was developed in 
FY20 to address these limitations. This feature vector design is a prototype and is expected to be iterated 
throughout FY21.

Instead of summarizing the Peregrine data for an entire part, these feature vectors use a Gaussian kernel to 
compute a weighted average of Peregrine anomaly detections in the region surrounding each voxel. 
Therefore, each voxel within each part will have a unique feature vector instead of the entire part being 
represented by a single feature vector. This has the added advantage of encoding information about the 
region beyond the nominal part boundary: for example, spatter can only be reliably detected in the 
powder surrounding a part, but it may be highly correlated to the energy density used to fabricate that 
part. Information about the local part geometry is also encoded by the feature vectors. Specifically, the 
distances of each voxel from the nearest part edge, as well as from the top and bottom part surfaces, are 
captured. These geometry metrics were chosen based on the TCR team’s physical understanding of the 
powder bed additive manufacturing processes.

The TCR data team has also developed methods for processing and spatially mapping temporal data from 
the machines’ embedded sensors. These sensors report fluctuations in environmental conditions and the 
status of machine subsystems. Additional detail describing the spatial mapping process are included in the 
FY20 TCR report entitled Development of Monitoring Techniques for Laser Powder Bed Additive 
Manufacturing of Metal Structures. Such fluctuations across layers have already been shown to affect 
physical attributes of the parts (as seen in Figure 8), and the ability to spatially map these fluctuations 
within a layer will allow these data to be included in the local feature vectors.

Because these feature vectors are designed by humans, they may not be optimized as they would be in a 
deep learning (DL) algorithm. However, by designing the feature vectors a priori, the number of ex-situ 
tests which must be performed to train the ML model is reduced by many orders of magnitude. A current 
limitation of this design is a rather large computer memory requirement during analysis of a full-scale 
build. Efforts in FY21 will include reducing or accommodating the memory footprint and iterating on the 
design of the feature vectors themselves.  

4.4 MACHINE LEARNING APPROACH

In FY 20, a preliminary ML model was developed to predict mechanical part properties based on the 
localized feature vectors described in Section 4.3. This model topology is a prototype and is expected to 
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be iterated throughout FY21 as increasingly large amounts of training data become available. This 
prototype approach is a general linear model using a Gaussian family distribution.

The prototype model was trained on data from 235 of the tensile specimens introduced in Section 4.1. 
Once trained, the model was used to predict the YTS values of the remaining 117 tensile specimens. 
Figure 19 compares the predicted YTS values to the measured YTS values for these 117 specimens. If the 
model had made perfect predictions, then all of the datapoints would lie on the overlaid line. Figures 
Figure 20–Figure 21 show similar results given reasonable variations of the prototype model. The 
variation in the predictions amongst the presented models is one example of the uncertainty common to 
ML techniques. Uncertainty quantification is discussed in more detail in Section 5.5. In this particular 
situation, the in-situ Peregrine-detected classes which were most correlated with YTS include powder, 
printed area, recoater streaking, and swelling. It is worth reiterating that neither this ML model nor any 
of the resultant conclusions are generalizable beyond this specific as-built part in this specific AM build at 
this time.

Figure 19. Each datapoint represents one of the 117 tensile specimens contained within the testing dataset. 
The ML-predicted YTS values are reported on the x-axis, whereas the true measured YTS values are reported on 

the y-axis. If the ML model were perfect, then all of the datapoints would lie on top of the overlaid line.
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Figure 20. These results were produced using variation #2 of the ML model shown in Figure 19.

Figure 21. These results were produced using variation #3 of the ML model shown in Figure 19.



20

5. A PATH FORWARD

With the Digital Platform infrastructure and testing procedures developed in FY20, the TCR digital team 
will focus on scaling up the ex-situ testing campaign in FY21. There will be a particular emphasis on 
designing build and specimen geometries to effectively induce, observe, and characterize AM-relevant in-
process defects. As a corollary, the reactor-relevant part property metrics will be down-selected to a 
handful of scalable and appropriate ex-situ tests. Changes to the in-situ sensing systems on the L-PBF 
AM machines will be implemented and the in-situ feature vectors and ML models presented in Section 4 
will be optimized. Importantly, uncertainty quantification of the AI techniques will also be considered. 
Each of these challenges is further discussed in the following subsections.

5.1 TESTING SPECIMENS AT SCALE

As discussed throughout this report, training a relay of AI models to robustly predict part properties based 
on in-situ data requires on the order of thousands of test specimens. Each of these specimens must be 
carefully tracked in both the physical and digital realms. Much of the efforts in FY20 revolved around 
developing the Digital Platform infrastructure necessary for managing thousands of these Digital Threads. 
Procedures for data registration across Operations were also developed. In FY21, more automated 
specimen tracking (e.g., printed quick response [QR] codes) and data registration techniques must be 
developed and implemented to handle the anticipated volume of test specimens.

Perhaps even more important than collecting the requisite number of test specimens is collecting a 
sufficient variety of specimens. Specifically, the specimens used for training must be representative of the 
true population. This is particularly challenging for AM, because process variability is extremely high, 
often stochastic, and many of the underlying mechanisms are not fully understood. The first priority of the 
TCR digital team in FY21 will be to create a specimen manufacturing plan designed to capture the widest 
range of reasonable process variability possible within the scope of the TCR program. It is expected that 
capturing a fully representative training dataset will not be possible, so additional algorithmic solutions 
are being considered (Section 5.5). A nonexclusive list of process variability considerations for L-PBF 
AM is presented below:

1. Layer times
2. Build heights
3. Location within the build chamber
4. Printing orientation
5. Laser module used for melting
6. Processing parameters
7. Time since machine maintenance and calibration
8. Feedstock characteristics and utilization history

Finally, it is well known that local part geometry can have a significant effect on AM in-process defect 
populations and their effects on final part properties. In particular, there are significant differences 
between “bulk” and “thin-wall” geometries as well as “down-skins” and “up-skins.” It can be particularly 
difficult to probe non-bulk regions of an AM build via mechanical testing. Doing so will require careful 
design of the as-printed parts, and it may require the use of nonstandard test specimen geometries. 
Another potentially viable approach is to directly test geometries analogous to those which will be used 
within the reactor core. Testing such non-bulk geometries will be another focus of FY21.
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5.2 DOWN-SELECTION OF TESTING PROCEDURES

Because an extremely large number of samples must be fabricated and tested to train each ML model, the 
part properties of interest for the TCR program must be down-selected. For example, while YTS, fracture 
toughness, fatigue life, thermal conductivity, and corrosion resistance may all be of interest, only a subset 
of these properties can be reasonably investigated using AI. Because the selected properties will influence 
test specimen geometries and require differing amounts of testing time per specimen, this down-selection 
process must occur in tandem with the experimental design process outlined in Section 5.1.

For the purposes of developing the TCR Digital Platform, it is also important that the selected properties 
show significant variation over the expected AM processing window and that their underlying 
mechanisms can be directly or indirectly observed by the available in-situ sensing capabilities. To a first 
degree, this suggests that the selected properties should be defect sensitive. As an example, YTS is not 
expected to be particularly defect sensitive, but fracture toughness may be sensitive to various AM 
porosities. Microstructure sensitivity may also be viable, but this will depend strongly upon the post-build 
heat treatment chosen for the TCR AM SS316L components. 

5.3 IMPROVEMENTS TO L-PBF IN-SITU SENSING CAPABILITIES

Improvements to the in-situ sensing suite on the ConceptLaser M2 AM machine will focus primarily on 
increasing imaging resolution and enabling additional direct defect detection capabilities. These planned 
changes are detailed in the FY20 TCR report entitled Development of Monitoring Techniques for Laser 
Powder Bed Additive Manufacturing of Metal Structures.

5.4 IMPROVEMENTS TO THE MACHINE LEARNING MODELS

The TCR digital team considers optimization of the localized property prediction ML models to be a 
relatively low-risk endeavor. Indeed, these types of ML models are well understood and relatively trivial 
to iteratively improve. However, proper optimization cannot begin until the rigorous testing campaign is 
underway, producing substantial quantities of high-quality and representative data. 

5.5 MACHINE LEARNING UNCERTAINTY QUANTIFICATION

There are several potential sources of uncertainty in the predictions produced by ML algorithms. First, the 
hyperparameters, model topology, and learned weights can and are expected to influence the predicted 
outcomes. This form of uncertainty is relatively easily quantified and controlled using contemporary 
hyperparameter optimization techniques and Monte Carlo simulations. The second form of uncertainty is 
the result of how a human observer may interpret the output of the ML model. That is, if the model is a 
“black box,” then how does the human know whether or not to trust its predictions? While this is still an 
open research topic in the AI field, the TCR team plans to address this issue by selecting model 
topologies which allow humans to plainly observe which features within the feature vectors are most 
responsible for making a given prediction. 

Finally, ML models are known to perform poorly in extrapolation (vs. interpolation) scenarios. Therefore, 
it is absolutely critical that the training datasets are representative of the true data populations. 
Unfortunately, as discussed in Section 5.1, ensuring that this condition is fully met is likely not possible 
within the scope of the TCR program. To ameliorate this issue, the TCR team proposes to implement a 
heuristic “circuit-breaker” within the model to first confirm that an interpolation is being performed and 
not an extrapolation. This pre-check will be implemented by comparing the feature vector of the new data 
for which a value is being predicted to all of the feature vectors contained within the training database. If 
this feature vector is substantially similar to previously observed feature vectors, then we expect to trust 
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the output of the ML model. If, however, the new feature vector is very different than the training data, 
the model will output “I do not know the answer” instead of outputting an extrapolated prediction. 
Determining a robust threshold for this heuristic will require experimentation and is expected to be a 
focus of the latter portion of FY21, continuing into FY22.

6. CONCLUSION

This report validates the TCR team’s conceptual data–driven methodology to correlate in-situ and ex-situ 
measurements for the purpose of ensuring quality control and providing certification for additively 
manufactured nuclear components. Multiple experiments and associated tests have been analyzed and 
interpreted to confirm this approach and to highlight gaps which must be addressed to attain a 
generalizable approach to certification. To address the later, a scientifically driven path forward has been 
established which relies on a series of design of experiments to produce high quality datasets. This will 
allow for exploration of the parameter spaces of the relevant additive manufacturing systems. At the end 
of the period of performance, a robust Digital Platform will be provided that will serve as the scientific 
foundation for certification of modern nuclear components produced via advanced manufacturing 
processes. 
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APPENDIX A. TCR DIGITAL PLATFORM

A-1. THE DIGITAL PLATFORM

The Digital Platform encompasses the design intent information, networking, and computing 
infrastructure, in situ sensing hardware, metrology and characterization processes, data storage and 
management systems, and software and analytics tools necessary to create and effectively leverage a 
Digital Thread (aka a digital twin) for each part and test specimen created for the TCR program. 
Components of the Digital Platform that have TCR-specific definitions are capitalized throughout this 
report for clarity. The backbone of the Digital Platform is a searchable Database linking data from 
component design, in situ sensors, characterization, user entries, machine calibration Timelines, and 
feedstock utilization Timelines. This information is physically stored on various Data Servers and is 
accessible via the Digital Tool web interface and associated application programming interfaces (APIs). 
The Digital Tool and APIs are hosted on the Database Server. Data are processed and visualized on 
Compute Servers or local user computers (e.g., desktops and laptops) using various ORNL-developed 
Software Tools; the Software Tools access the Database using standardized APIs. Figure A-1 provides an 
overview of the Digital Platform.

Figure A-1. An overview of the Digital Platform.

Each physical TCR component and test specimen will have a corresponding Digital Thread. Each Digital 
Thread is composed of building blocks referred to as Operations. Operations may be manufacturing 
processes, material characterization techniques, maintenance procedures, or purchases. Operations may 
act on a physical component, material feedstock (e.g., powder or wire), or a machine (e.g., a 3D printer). 
Example Operations include laser powder bed additive manufacturing (AM), annealing, wire electrical 
discharge machining, chemical vapor infiltration (CVI), scanning electron microscopy, tensile testing, 
purchasing a component from a supplier, and laser calibration. Some Operations may also instantiate new 
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parts or split an existing parent part into multiple child parts. The Digital Thread for a child part includes 
the thread for its parent.

Functionally, each Digital Thread is a list of Operations that have been performed on a given component 
and any corollary Operations that compose the machine maintenance and feedstock utilization Timelines. 
The Database stores these Digital Threads and allows users to access the data (e.g., in situ powder bed 
images) associated with each Operation. A combination of the Digital Tool web interface and various 
Software Tools is used to visualize and analyze the Operation data. Data from multiple Operations may 
be spatially co-registered and visualized using certain Software Tools. Figure A-2 shows a representation 
of an example Digital Thread.

Figure A-2. A representation of an example Digital Thread. The process begins in the upper left-hand corner 
and follows the arrows counterclockwise.

At a more granular level, information is incorporated into a Digital Thread as part of the Digital 
Workflow. Many different types of users may interact with a given Digital Workflow, including reactor 
designers, advanced manufacturing engineers, machine technicians and operators, material scientists, data 
analysts, program managers, and public communications specialists. The composition of each Digital 
Thread, and therefore the corresponding Digital Workflow, varies dramatically, depending on the 
particular component. As an example, Figure A-3 shows a simplified Digital Workflow for a binder jet–
printed silicon carbide reactor fuel element.
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Figure A-3. A simplified Digital Workflow for the manufacture of a silicon carbide fuel element.

A primary goal of the TCR program is the prediction of reactor-relevant part properties based on in situ 
data collected during various advanced manufacturing processes. To this end, augmented intelligence (AI) 
algorithms will ingest collections of Digital Threads in order to identify correlations between in situ data 
and part properties. We deliberately refer to such algorithms as augmented intelligence instead of 
artificial intelligence to convey the necessity of keeping expert humans and their physics-based 
understanding of the world “in the loop” throughout these analyses. Critically, part property prediction 
will be accomplished through a relay of AI algorithms, with each hand-off leveraging human expertise to 
inspect the AI performance and to point the subsequent AI in the correct direction. This relay approach is 
essential to ingest the highly unstructured and extremely high dimensional in situ sensing data and to 
successfully link it to part property measurements without requiring a prohibitively large number of ex 
situ characterization experiments. To further clarify the terminology used throughout the TCR reports, AI 
is considered to be a broad umbrella of algorithms which includes heuristics, machine learning (ML), and 
deep learning (DL). The in situ/ex situ property correlation efforts for FY 2020 are described in a separate 
TCR report titled Viability of Data Analytics to Ascertain Component Performance for Additive 
Manufacturing. Consistent tracking of each reactor part and test specimen is a critical aspect of this 
approach. Development of a robust, integrated, and automatic specimen naming scheme was completed in 
FY 2020 and is illustrated in Figure A-4.
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Figure A-4. Specimen numbering scheme following the ASTM 52900:2015(E) standard [1].

Importantly, AI is used for data analysis and visualization throughout the Digital Thread. AI usage for the 
TCR program can be approximately separated into four different application areas: descriptive, 
diagnostic, predictive, and prescriptive. Descriptive AI is used to analyze raw data, an example being 
segmentation of powder bed images and identification of process anomalies. Diagnostic AI summarizes 
large datasets and presents them to a human user or another algorithm. A diagnostic AI might flag certain 
layers of an AM Operation for closer inspection by a human, or it might decide on an autonomous process 
intervention to attempt to correct a detected defect. A predictive AI seeks to predict part properties (e.g., 
fracture toughness) based on in situ data, process parameter information, and part geometry. 
Demonstration of a predictive AI is an end goal of the TCR program. Finally, a prescriptive AI might 
autonomously modify a part design in order to improve the predicted performance; this class of AI is 
beyond the scope of the TCR program, but it is the ultimate goal for the Digital Platform.

In FY 2020, the Digital Platform transitioned from a conceptualization framework and a set of stand-
alone tools into a highly flexible, scalable architecture with increasing integration between the Software 
Tools and the Digital Tool. The physical infrastructure needed to support the Digital Platform includes (1) 
a optical fiber–based dedicated network to connect all machines to the facility digital backbone, 
(2) dedicated Wi-Fi networks for Internet of Things (IoT) sensors, (3) redundant storage systems, and 
(4) multi-GPU (graphics processing unit) compute systems for AI model training and AI at the edge. 
FY 2020 also saw the standardization of the onboarding process for new Operations to be recognized by 
the Database. The remaining sections of this supplementary appendix describe the various components of 
the Digital Platform, including the ORNL-developed Software Tools. Changes and improvements made 
in FY 2020 are highlighted. 
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A-2. DATA STORAGE INFRASTRUCTURE AND DATABASE ARCHITECTURE

There is a diverse variety of data produced by a Digital Workflow during different Operations. The data 
produced vary with respect to the data source, data type, data format, and the scale of the data volume. 
The standardization of this wide variety of complex data is a challenging problem to solve. To address 
this complex data organization, the data are structured, organized, and stored on a dedicated Storage 
Server. This standardization facilitates users and services with improved data search, management, 
access, and retrieval functionality. The data are organized by the data source (i.e., Operation) and are 
further organized by the date of the Operation. The dedicated data Storage Server is used as the primary 
location for storing and accessing the data, whereas a secondary data Storage Server is used for monthly 
data backups. Some of the benefits that are achieved using a dedicated Storage Server for TCR data 
include the following.

1. The Data Storage Server acts as a centralized data repository, and the data are available to all the 
computers within the same network. 

2. Multiple users can access the same dataset, eliminating the need to make duplicate copies of data for 
different users.

3. Data integrity is maintained because the latest datasets are centralized and accessible.
4. The server provides better data management and implementation of security protocols, and it allows 

data access protocols to ensure that TCR data can only be accessed by authorized users.

A Database Server was installed, and a relational database was developed to store and organize the 
metadata produced from Operations and associated with the Digital Threads. PostgreSQL was selected as 
the standard database protocol; PostgreSQL is an open-source, object-relational database system. It is one 
of the most widely used database systems because of its strong community support, scalability, reliability, 
and consistent performance. PostgreSQL also provides a robust set of features to support complicated 
Digital Workflows.

The purpose of the PostgreSQL Database is to facilitate metadata collection, data organization, and 
storage, along with search and retrieval on the datasets stored on the Data Storage Server. To achieve 
these requirements, the Database was designed so that relevant data are stored in individual schemas. 
Some of the schemas present in the current database are as follows. 

1. Users: contains information about authorized users of the Database
2. Roles: contains information about which users have access to each Operation and dataset
3. Projects: contains information about different projects at the Manufacturing Demonstration Facility 

(MDF)
4. Machines: contains information about different manufacturing equipment 
5. Materials: contains information about the feedstock materials and their manufacturers
6. Operations: contains information about Operations supported by the Digital Workflows
7. Parts: contains information about all manufactured specimens and the Operations which compose 

their associated Digital Threads

In addition to the schemas listed above, there are additional AM machine-specific schemas to store 
information about build datasets and the files in each dataset. These schemas contain metadata that 
populate the Digital Thread of each manufactured component.

A-3. DIGITAL TOOL (WEB INTERFACE AND APIs)

The Digital Tool is a web-based application developed in Vue.js at ORNL. Vue.js was selected for the 
development of this platform because of its small size, high performance, and excellent flexibility. Vue.js 
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also has detailed documentation available, and it supports microservices architectures for developing web 
applications. Microservices architectures support incremental and modular growth of the application, thus 
making it a suitable framework for developing scalable infrastructure. Figure A-5 illustrates a 
microservices architecture.

Figure A-5. Representation of the microservices-based architecture utilized by the Digital Tool.

The main components of the Digital Tool microservices architecture are as follows.

1. Digital Tool: the web application that is developed using JavaScript and html

2. Microservices: RESTful services developed in Python flask. These services run independently as a 
service and can communicate and pass information between data sources and the Digital Tool. 
Additionally, these services can be used by various Software Tools developed by the TCR data team. 
Currently, there are multiple independent microservices running which vary in functionality from 
querying databases, updating databases, and performing data transfer actions.
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3. Data sources: microservices act as an interface between the applications and data sources. In this 
architecture, the data sources are the PostgreSQL Database and central Data Storage Server.

The Digital Tool provides online forms (Figure A-6) to help technicians record metadata before, during, 
or after an Operation. These metadata tracking forms were developed based on feedback from technicians 
and the ultimate data users. The forms are validated to ensure that the metadata collected are standardized, 
complete, and correct. 

Figure A-6. An example metadata entry form for an Operation.

The Digital Tool allows users to search (Figure A-7) the existing datasets based on the recorded metadata. 
This feature enables users to narrow down the desired datasets based on specific metadata, as well as less 
structured criteria such as the processing parameters used for an additive build.
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Figure A-7. An example outcome of a search action.

The Digital Tool also allows users to explore the existing AM build datasets contained on the Data 
Storage Server. There are multiple data viewers (Figure A-8) to support exploring different data types 
including image viewers, STL viewers, PDF viewers, and log file viewers. This feature allows multiple 
users to access data simultaneously without requiring direct access to the stored data, thereby preventing 
accidental data modification. 

Figure A-8. An example of the image viewer feature.

A-4. PEREGRINE

Peregrine is a Software Tool developed in Python at ORNL. Peregrine is intended for use with powder 
bed AM machines (i.e., printers), including laser powder bed fusion (LPBF), electron beam powder bed 
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fusion (EB-PBF), and binder jetting technologies. In its fullest implementation, Peregrine autonomously 
collects and analyzes layer-wise imaging data, provides remote monitoring and process intervention 
capabilities, tracks metadata and part information, produces advanced visualizations of both the 
underlying data and the AI analysis results, and enables identification of correlations between in situ data 
and process parameters or ex situ measurements. 

Peregrine’s core capability is pixel-wise anomaly detection based on layer-wise images of the powder 
bed. This semantic segmentation of the data is achieved using a novel DL algorithm referred to as a 
dynamic segmentation convolutional neural network (DSCNN). The DSCNN architecture was designed 
specifically to overcome many of the challenges common to powder bed imaging data and is fully 
described in Scime et al. [2]. Beyond this core capability, Peregrine also empowers users with several 
advanced analytics and data tracking tools.

1. Each layer in a build can be flagged based on the DSCNN pixel segmentation results using either a 
set of user-defined heuristics (i.e., rules) or a learned ML model, referred to as the DSCNN-
Perceptron (DSCNN-P). 

2. Peregrine provides advanced data visualization, allowing the user to visualize the raw data, DSCNN, 
and DSCNN-P results in various formats. These visualizations include image overlays, plots of time 
series data, frequency analyses, specimen quality scoring, data projections in each orthogonal plane, 
3D reconstructions, and time-lapse videos of the build. 

3. Peregrine provides automatic specimen numbering and statistics. Up to two sets of computer-aided 
design (CAD) geometry information can be associated with each build, including the as-built 
geometries, which are referred to as parts, and the geometries of any samples removed from the 
components after the build is complete, such as  a tensile bar. The term specimen is used by Peregrine 
to refer to either a part or a sample. 

4. Metadata can be tracked for each build, along with reference images, log files (supported printers 
only), coaxial time series data (supported printers only), and registered ex situ data. Peregrine also 
includes 2.5D registration capability, allowing users to overlay ex situ data such as x-ray computed 
tomography (XCT) slice images on top of in situ data and DSCNN results.

5. Peregrine is capable of direct data collection and real-time analysis using most USB and ethernet 
cameras. During a live analysis, Peregrine can send alert emails to technicians, execute customizable 
macros to interface with a printer’s user interface to effect process interventions, and provide remote 
viewing of the build status via a companion instance of Peregrine.

6. A limited number of statistics tools are also provided to enable the user to investigate potential 
correlations between Peregrine’s in situ results and process parameters or ex situ measurements.

A high-level overview of Peregrine’s capabilities is presented in Figure A-9, and Peregrine’s internal data 
flow is summarized in Figure A-10. The figures illustrate bundling of all of the layer-wise imaging data 
into a single calibrated image stack, followed by a tiling operation before the data are fed into the 
DSCNN. The pixel classifications predicted by the DSCNN are then compared with the template image, 
and potentially the raw powder bed imaging data, using pixel heuristics. These comparisons create the 
final pixel classifications observed by the user. The output of the DSCNN is fed into the DSCNN-P to 
allow for labeling of the entire build layer, or image stack. Finally, the labels assigned by the DSCNN-P 
are combined with the global heuristics and presented to the user as layer flags.



A-10

Figure A-9. Overview of Peregrine’s capabilities and operation.
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Figure A-10. Peregrine’s internal data flow.
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Peregrine has been under development since FY 2018. It is currently on major version 20 and is used by 
approximately 10 members of the TCR team. Users include data scientists, material scientists, and 
machine technicians. Over 100 pages of documentation and training materials have been written for 
Peregrine in FY 2020. In FY 2020, ORNL authored a journal paper describing the DSCNN that was 
published in Additive Manufacturing. Peregrine can now be licensed to companies, with over 10 
companies already expressing interest. Below is a list of the major Peregrine improvements completed in 
FY 2020.

1. The software release process was formalized, including documentation, versioning, archiving, and 
bug reporting.

2. An immutable change log is now created for each build analysis to record all data edits and builds can 
now be marked as containing sensitive data.

3. Peregrine has been integrated into the Digital Platform, allowing data to be passed to and from the 
Database. Printer settings, calibrations, trained neural networks, and analyzed builds are hosted on the 
Data Storage Servers and are transparently accessible to all users at ORNL and those working 
remotely. Any trained user can directly update training data to improve AI model performance. 
Versioning improvements allow changes to be tracked as multiple users modify shared files.

4. A part numbering standard was introduced for the TCR program. Peregrine automatically numbers all 
specimens for each build. Automatic and consistent numbering is absolutely critical for tracking and 
maintaining the hundreds of thousands of Digital Threads to be stored on the Digital Platform. 

5. The DSCNN architecture was upgraded to DSCNNv2. This architecture improves accuracy, 
segmentation of curvilinear structures, and segmentation of smaller structures, and it also reduces 
inference time and tiling artifacts. DSCNNv2 dramatically improves training flexibility and follows 
more industry standards for neural network design. 

6. The entire data loading architecture was rewritten to allow for color images, 16-bit images, a truly 
arbitrary number of cameras, an arbitrary number of temporal frames, and more complex inter-layer 
lighting differences. These changes make Peregrine much more flexible as the imaging systems on 
several of the printers are improved in FY 2021.

7. XCT data can now be co-registered to the in situ imaging data and overlaid on top of the DSCNN 
predictions within Peregrine. 

8. Data collected live are fully analyzed and accessible in real-time—this is critical for handling the 
massive TCR data burden.

9. The DSCNN-Perceptron can now be used to flag layers to bring them to the attention of a user or 
machine operator, and early results using this capability are promising. A training data collection and 
labeling campaign began in FY 2020 and will continue in FY 2021 to improve the utility of the 
DSCNN-P predictions. 

10. The entire user interface was rebuilt based on over a year of user feedback. The primary goal was to 
enable faster, more efficient review of the analyzed build data and to enable crowdsourcing for 
collection of new training data.

11. The ConceptLaser X-Line 2000R machine type is now recognized by Peregrine.
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12. Several artifacts can now be removed from the QM Meltpool data.

13. Log files can now be parsed for the ExOne Innovent and ExOne M-Flex machines.

A-5. RAVEN

Raven is a Software Tool developed in Python at ORNL. Raven is intended for use with the CVI process. 
Specifically, it allows the user to track the locations of the binder jet printed parts prior to insertion into 
the CVI furnace. CVI technicians will take a series of images of the parts as they are loaded onto the 
furnace platforms, or “grid plates.” These images are taken under controlled lighting conditions and 
background subtraction, along with other classical computer vision techniques. The images are used to 
determine the boundaries of each part. Each part is then assigned an identifier number produced by the 
Peregrine Software Tool during the instantiating printing process. The part locations and their 
corresponding identifiers are saved to a file which is uploaded to the Database via the Digital Tool web 
interface.

Development of Raven began in FY 2020, and it is currently on major version 1. Raven has not yet been 
deployed to users because COVID-19 restrictions delayed assembly and testing of the physical imaging 
system. Bringing Raven fully online is a priority for early FY 2021. Approximately 10 pages of 
documentation and training materials were written for Raven in FY 2020. The intended users of Raven 
will be the CVI machine technicians. 

A-6. SCOPS

SCOPS is a set of imaging systems and an analysis method developed to analyze the complex 
thermomechanical history of parts printed with directed energy deposition (DED). The system uses stereo 
digital image correlation (DIC) to 3D map surface roughness features on parts as they are printed and 
tracks their motion over time. This allows for direct, in situ, noninvasive deformation and strain 
measurements over the entire part. This is combined with infrared thermal imaging to measure material 
expansion and contraction as a function of heat flow through the part. The SCOPS system is summarized 
graphically in Figure A-11.
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Figure A-11. (a) SCOPS imaging system, two stereo high-resolution visible cameras and an infrared 
camera, (b) visible trackable surface roughness of representative deposition, (c) infrared imaging showing 

thermal dissipation, (d) 3D map constructed from surface features, (e) tracked deformation induced from a 
combination of residual strain and thermal expansion from (f) 3D mapped infrared signal showing hot 

regions.

In FY 2020, two DED machines were outfitted with SCOPS: the BeAM modulo 400 and GKN cell 1. 
System hardware configuration was developed and optimized, along with supporting software for 
automated video capture and archival. Blackbody calibration was performed, and thermocouple validation 
of infrared imaging was automated. A validation experiment comparing DIC with neutron diffraction 
residual stress measurements was performed. Information from SCOPS provides an in situ measure of a 
previously inaccessible information stream, and it enables direct validation of finite element analysis 
(FEA) models, enhancing the accuracy of residual stress and microstructure simulation.

A-7. PIGEON

Pigeon was developed at ORNL and is both a Software Tool and a Python API. Pigeon is primarily an 
image segmentation software tool powered by a DSCNN. For more information regarding the DSCNN, 
users are referred to Scime et al. [2]. Pigeon’s data flow is essentially identical to that represented in 
Figure A-10 for Peregrine. Some of Pigeon’s key features include the following.

1. Pigeon accepts an arbitrary number of input channels, working seamlessly with both RGB and single-
channel images. Pigeon also supports an arbitrary number of temporal frames associated with each 
explicit channel. For example, if two spatially registered color images, each with two temporal 
frames, are provided, then there are two explicit channels and 12 implicit channels.

2. Pigeon accepts images of arbitrary bit depth (up to 16 bits).
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3. Pigeon accepts images of arbitrary resolution while ensuring that the output segmentation is always at 
the resolution of the input image.

4. The DSCNN is designed to work well with very high-resolution images of 20 MP or greater, even 
with limited GPU RAM available. It also provides sublinear analysis times, so doubling the image 
resolution will not double the inference time.

5. A low-resolution leg of the DSCNN always has a receptive field equal in size to the entire input 
image. This helps the DSCNN to learn to be robust to lighting variations and global scene changes.

6. The medium-resolution leg of the DSCNN has a receptive field which can be dynamically configured 
by the user. The size of this tile should be based on domain knowledge such that it includes the 
appropriate amount of contextual information.

7. The DSCNN can learn prior probability distributions that are a function of pixel location within the 
global image.

8. Class-wise imbalances are not a significant issue, because automatic rescaling of the loss function 
ensures that the DSCNN learns even extremely rare classes.

9. Full transfer learning from any DSCNN to any other DSCNN is supported.

10. The user can create multiple workspaces for working on different problems.

11. The DSCNN also outputs a deep feature vector which can be used by a perceptron to classify the 
entire image stack.

Development of Pigeon started in FY 2020. It is currently on major version 1 and is used by several 
members of the TCR team. Over 30 pages of documentation and training materials have been written for 
Pigeon in FY 2020. Users include data and material scientists. Pigeon is intended primarily as a 
development platform for creating different characterization tools. For example, Pigeon can serve as the 
framework for multiple Software Tools, such as one dedicated to characterizing powder feedstock and 
another focused on analyzing AM microstructures. Efforts are already under way to use Pigeon for a 
number of different aspects of the TCR Digital Platform, with a primary focus on automated material 
characterization.

A-8. SIMURGH

XCT is a process in which a 3D volume of an object of interest that represents attenuation coefficients of 
its comprising materials is reconstructed from 2D projections of the object acquired at different angles 
(views). XCT plays a critical role in nondestructive evaluation (NDE) and therefore 
certification/qualification of metal AM components. The quality of the 3D reconstruction algorithms used 
for dense metallic parts in complex systems and structures can be compromised by noise and artifacts 
such as streaks associated with metals, and a confounding effect called beam hardening (BH). Such 
artifacts and noise complicate the process of detection of salient defects (e.g., pores and cracks) in XCT 
images.

ORNL has developed an AI-based technique, Simurgh, that leverages CAD models of the parts, along 
with physics-based modeling, that shows significant improvement in XCT resolution by surpassing the 
state of the art in suppressing BH, metal artifacts, and noise in preliminary tests on both synthetic and real 
data. Figure A-12 shows a block diagram of the Simurgh technique. Figure A-13 and Figure A-14 show 
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example results on both synthetic and real data sets, respectively. For development and testing of the 
method, the data currently available at the MDF were used: XCT scans of printed airplane engine turbine 
blades. In FY 2021, these methods will be evaluated and developed further for application to TCR-
relevant geometries.
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Figure A-12. Block diagram of the Simurgh framework. ORNL trains a convolutional neural network (AI-CT, top right) on the simulated (synthetic) data 
developed using CAD models and physics-based parameters.
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Figure A-13. Example test results on a synthetic data set. Two different neural networks (MSD-Net [3] and 
AI-CT [4], [5]) to emphasize the modularity of the approach. The method is also compared against uncorrected 
standard analytical (FDK) approach [6] and state-of-the-art model-based iterative reconstruction (MBIR) [7]. 
Several areas of interest are highlighted to demonstrate the superiority of the work against the state of the art.

Figure A-14. Example test results on real data set. The proposed method is compared against the standard 
output from the ZEISS XCT system standard reconstruction, as well as the uncorrected 

standard analytical (FDK) approach and MSD-Net as a second neural network. 
Expanded views of areas of interest are highlighted in the inset images.
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Functionally, a convolutional neural network (denoted as AI-CT in Figure A-12) is trained on the 
simulated (synthetic) data developed using CAD models and physics-based parameters. Then it is tested 
on synthetic and real data sets, as shown in Figure A-13 and Figure A-14, respectively. Two different 
neural networks—MSD-Net [3] and AI-CT [4], [5]—are tested to emphasize the modularity of this 
approach. The method is also compared against the standard output from the XCT system, as well as the 
uncorrected standard analytical (FDK) approach [6] and the state-of-the-art model-based iterative 
reconstruction (MBIR) approach [7].

ORNL has published a peer-reviewed conference paper on this topic, and a provisional patent has been 
filed by ORNL. A Technology Innovation Program (TIP) proposal was submitted to the Technology 
Transfer Office, and since its acceptance, the full proposal is in development. The Simurgh method is 
supported by ZEISS Quality Solutions, and they are considering licensing the technology from ORNL.
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